This section is an overview of the STAT Icon; it will highlight just a few of the features for single-variable data and paired-variable data. To select this icon, you may highlight it and press [2].

IZQI

લ

すうし

STATISTICS

+ () 4

The initial screen is the List Editor Screen that allows input of statistical data and performs numerous statistical calculations. To input a list of single-variable data, highlight the first cell under List 1 and enter each number followed by EXE.

1. For this example, input this set of data:

List 1	1	0.5	1.2	4	-1	1	3	5	6	3.4

2. From this screen you can display various statistical graphs depending on whether you have single or paired-variable data (scatter-plot, line, normal probability, histogram, median box, mean box, normal distribution, broken line, and regression: linear, quadratic, cubic, quartic, logarithmic, exponential, power, sinusoidal and logistic).

3. The initial default graph is a scatter-plot. To change the type of graph you would like to use, press F1 (GRPH), then F6 (SET), arrow down to **Graph Type**, for this set of data, we will make a histogram, press F6, and then F1 for histogram.

StatGraph1	StatGraph1
Graph Type :Scatter	Graph Type =Scatter
XList :List1	XList :List1
YList :List2	YList :List2
Frequency :1	Frequency :1
Mark Type :•	Mark Type :0
Scat XX NPP Pie D	Hist Box Bar NDis Brkn D

4. Press EXIT to return to your list of data, select F1 (GPH1) then EXE to see your graph.

5. The following screen shots show one-variable calculations that can be obtained by pressing **F1**.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1-Uariable x =2.39 Σx =23.9 Σx² =101.81 σx =2.11397729 sx =2.22832772 n =10 □08600	1-Uariable minX =-1 Q1 =1 Med =2 Q3 =4 maxX =6 Mod =1	↑ ↓ DRAW	1-Variable Med =2 Q3 =4 maxX =6 Mod =1 Mod:n=1 Mod:F=3	↑ (draw
---	---	---	-----------------	--	------------

6. To delete this set of data, press **EXIT** until you return to the initial List Editor screen. Select **F6** for more options, arrow up until List 1 is highlighted, select **F4** (Del-A), then **F1**.

すうし

IZQI -

ল

7. For paired variable data, use the following:

List 1	0.5	1.2	2.4	4	5.2
List 2	-2.1	0.3	1.5	2	2.5

Enter List 1 first, and then () to begin entering List 2. The cursor will automatically move to the beginning of the next list.

8. To see a scatter-plot of these data, you can go through and change GPH 1 back, using the process above, or select F2 (GPH 2) from the List Editor screen whose default is also a scatter-plot.

9. From the scatter-plot screen, pressing F1 will show all the calculations that can be obtained from this set of data.

10. To calculate a linear regression for these data, select F2 from the first set of options and then press F1 or F2 for the preferred form. For this example, we will use y = ax + b.

11. From this screen, select **F5** (COPY) to copy and then paste the regression equation into the initial Graph screen or select **F6** (DRAW) to show the linear regression.

